Bridging Hardware and Software Analysis with Btor2C: A Word-Level-Circuit-to-C Translator

Author:

Beyer DirkORCID,Chien Po-ChunORCID,Lee Nian-ZeORCID

Abstract

AbstractAcross the broad research field concerned with the analysis of computational systems, research endeavors are often categorized by the respective models under investigation. Algorithms and tools are usually developed for a specific model, hindering their applications to similar problems originating from other computational systems. A prominent example of such a situation is the area of formal verification and testing for hardware and software systems. The two research communities share common theoretical foundations and solving methods, including satisfiability, interpolation, and abstraction refinement. Nevertheless, it is often demanding for one community to benefit from the advancements of the other, as analyzers typically assume a particular input format. To bridge the gap between the hardware and software analysis, we propose Btor2C, a translator from word-level sequential circuits to C programs. We choose the Btor2 language as the input format for its simplicity and bit-precise semantics. It can be deemed as an intermediate representation tailored for analysis. Given a Btor2 circuit, Btor2C generates a behaviorally equivalent program in the language C, supported by many static program analyzers. We demonstrate the use cases of Btor2C by translating the benchmark set from the Hardware Model Checking Competitions into C programs and analyze them by tools from the Intl. Competitions on Software Verification and Testing. Our results show that software analyzers can complement hardware verifiers for enhanced quality assurance: For example, the software verifier VeriAbs with Btor2C as preprocessor found more bugs than the best hardware verifiers ABC and AVR in our experiment.

Publisher

Springer Nature Switzerland

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Certifying Phase Abstraction;Lecture Notes in Computer Science;2024

2. The MoXI Model Exchange Tool Suite;Lecture Notes in Computer Science;2024

3. Btor2-Cert: A Certifying Hardware-Verification Framework Using Software Analyzers;Lecture Notes in Computer Science;2024

4. CPV: A Circuit-Based Program Verifier;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3