Publisher
Springer International Publishing
Reference39 articles.
1. Anderson, G., Pailoor, S., Dillig, I., Chaudhuri, S.: Optimization and abstraction: a synergistic approach for analyzing neural network robustness. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI’19, pp. 731–744 (2019)
2. Bacci, E., Parker, D.: Probabilistic guarantees for safe deep reinforcement learning (2020). arXiv preprint arXiv:2005.07073
3. Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via policy extraction. In: Proceedings of the 2018 Annual Conference on Neural Information Processing Systems, NeurIPS’18, pp. 2499–2509 (2018)
4. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient and robust access method for points and rectangles. In: Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data, pp. 322–331 (1990)
5. Bougiouklis, A., Korkofigkas, A., Stamou, G.: Improving fuel economy with LSTM networks and reinforcement learning. In: Proceedings of the International Conference on Artificial Neural Networks, ICANN’18, pp. 230–239 (2018)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献