Author:
Todorov Venelin,Georgiev Slavi,Dimov Ivan
Publisher
Springer Nature Switzerland
Reference10 articles.
1. Curtiss, J.H.: Monte Carlo methods for the iteration of linear operators. J. Math Phys., vol 32(4). (1954), pp. 209–232.
2. Curtiss, J.H.: A Theoretical Comparison of the Efficiencies of two classical methods and a Monte Carlo method for Computing one component of the solution of a set of Linear Algebraic Equations. Proc. Symp. MC Meth., John Wiley and Sons, 1956, pp. 191–233.
3. Dimov, I.T.: Monte Carlo Methods for Applied Scientists, New Jersey, London, Singapore, World Scientific, 291p (2008).
4. Dimov, I.T., Maire, S., Sellier, J.M.: A New Walk on Equations Monte Carlo Method for Linear Algebraic Problems, Applied Mathematical Modelling 39 (15), 4494–4510 (2015).
5. Halton, J.: Sequential Monte Carlo, Proceedings of the Cambridge Philosophical Society, Vol. 58 (1962) pp. 57–78.