Publisher
Springer Nature Switzerland
Reference15 articles.
1. Chen, T., Guestrin, C. : XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 785–794. ACM. (2016) https://doi.org/10.1145/2939672.2939785
2. Ferguson, R.I.: River loads underestimated by rating curves. Water Resour. Res. 22(1), 74–76 (1986)
3. Judd, C.M., McClelland, G.H., Culhane, S.E.: Data analysis: continuing issues in the everyday analysis of psychological data. Annu. Rev. Psychol. 46, 433–465 (1995)
4. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems (NIPS 2017), vol. 30, pp. 3149–3157 (2017)
5. LightGBM. https://lightgbm.readthedocs.io/en/latest/