Author:
Veronesi Alessandro,Bertozzi Davide,Krstic Milos
Publisher
Springer International Publishing
Reference34 articles.
1. Chen, J., Ran, X.: Deep learning with edge computing: a review. Proc. IEEE 107(8), 1655–16674 (2019). https://doi.org/10.1109/JPROC.2019.2921977
2. DiCecco, R., Lacey, G., Vasiljevic, J., Chow, P., Taylor, G., Areibi, S.: Caffeinated FPGAs: FPGA framework for convolutional neural networks. In: Proceedings of the 2016 International Conference on FPT, pp. 265–268 (2016). https://doi.org/10.1109/FPT.2016.7929549
3. Farshchi, F., Huang, Q., Yun, H.: Integrating NVIDIA deep learning accelerator (NVDLA) with RISC-V SoC on FireSim. arXiv preprint (2019). arXiv:1903.06495v2
4. Genc, H., et al.: Gemmini: an agile systolic array generator enabling systematic evaluations of deep-learning architectures. arXiv preprint (2019). arXiv:1911.09925
5. Gonzalez, A., Hong, C.: A Chipyard Comparison of NVDLA and Gemmini. http://charleshong3.github.io/projects/nvdla_v_gemmini.pdf