Deep Learning Driven Self-adaptive Hp Finite Element Method

Author:

Paszyński Maciej,Grzeszczuk Rafał,Pardo David,Demkowicz Leszek

Abstract

AbstractThe finite element method (FEM) is a popular tool for solving engineering problems governed by Partial Differential Equations (PDEs). The accuracy of the numerical solution depends on the quality of the computational mesh. We consider the self-adaptive hp-FEM, which generates optimal mesh refinements and delivers exponential convergence of the numerical error with respect to the mesh size. Thus, it enables solving difficult engineering problems with the highest possible numerical accuracy. We replace the computationally expensive kernel of the refinement algorithm with a deep neural network in this work. The network learns how to optimally refine the elements and modify the orders of the polynomials. In this way, the deterministic algorithm is replaced by a neural network that selects similar quality refinements in a fraction of the time needed by the original algorithm.

Publisher

Springer International Publishing

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of Physics Informed Neural Networks and Finite Element Method Solvers for advection-dominated diffusion problems;Journal of Computational Science;2024-09

2. Adaptive Deep Fourier Residual method via overlapping domain decomposition;Computer Methods in Applied Mechanics and Engineering;2024-07

3. Mesh Error Estimation Using Graph Neural Networks;2024 IEEE 21st Biennial Conference on Electromagnetic Field Computation (CEFC);2024-06-02

4. DynAMO: Multi-agent reinforcement learning for dynamic anticipatory mesh optimization with applications to hyperbolic conservation laws;Journal of Computational Physics;2024-06

5. Learning Robust Marking Policies for Adaptive Mesh Refinement;SIAM Journal on Scientific Computing;2024-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3