Author:
Emmery Chris,Wiltshire Travis J.
Publisher
Springer International Publishing
Reference41 articles.
1. Abadi, M., A. Chu, I.J. Goodfellow, H.B. McMahan, I. Mironov, K. Talwar, and L. Zhang. 2016. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, Vienna, Austria, October 24–28, 2016, ed. E.R. Weippl, S. Katzenbeisser, C. Kruegel, A.C. Myers, and S. Halevi, 308–318. New York, NY, USA, ACM.
2. Allison, S.T., G.R. Goethals, and R.M. Kramer. 2017. Setting the scene: The rise and coalescence of heroism science. In Handbook of heroism and heroic leadership, ed. S.T. Allison, G.R. Goethals, and R.M. Kramer. New York: Routledge.
3. Anthony, D.L., T. Henderson, and D. Kotz. 2007. Privacy in location-aware computing environments. IEEE Pervasive Computing 6 (4): 64–72. https://doi.org/10.1109/MPRV.2007.83.
4. Ateniese, G., L.V. Mancini, A. Spognardi, A. Villani, D. Vitali, and G. Felici. 2015. Hacking smart machines with smarter ones: How to extract meaningful data from machine learning classifiers. International Journal of Security and Networks 10 (3): 137–150. https://doi.org/10.1504/IJSN.2015.071829.
5. Bender, E.M., T. Gebru, A. McMillan-Major, and S. Shmitchell. 2021. On the dangers of stochastic parrots: Can language models be too big? In FAccT ‘21: 2021 ACM conference on fairness, accountability, and transparency, virtual event/Toronto, Canada, March 3–10, 2021, ed. M.C. Elish, W. Isaac, and R.S. Zemel, 610–623. ACM.