1. M. Walker, Hype cycle for emerging technologies, 2018. Tech. Rep. G00340159, Gartner Research (2018). https://www.gartner.com/en/documents/3885468/hype-cycle-for-emerging-technologies-2018
2. P.V. Coveney, E.R. Dougherty, R.R. Highfield, Big data need big theory too. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 374(2080), 20160,153 (2016). https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2016.0153
3. W. E, Machine learning: Mathematical theory and scientific applications, in ICIAM – International Congress on Industrial and Applied Mathematics (2019). https://web.math.princeton.edu/~weinan/ICIAM.pdf
4. K. Willcox, Predictive data science for physical systems – from model reduction to scientific machine learning (2019), in ICIAM – International Congress on Industrial and Applied Mathematics (2019). https://kiwi.oden.utexas.edu/papers/Willcox-Predictive-Data-Science-ICIAM-2019.pdf
5. C.F. Higham, D.J. Higham, Deep learning: an introduction for applied mathematicians. SIAM Rev. 61(4), 860–891 (2019)