Biologically Inspired and Energy-Efficient Neurons

Author:

Cheng Xiaoyan,Simmich Sebastian,Zahari Finn,Birkoben Tom,Noll Maximiliane,Wolfer Tobias,Hennig Eckhard,Rieger Robert,Kohlstedt Hermann,Bahr Andreas

Abstract

AbstractSilicon neurons represent different levels of biological details and accuracies as a trade-off between complexity and power consumption. With respect to this trade-off and high similarity to neuron behaviour models, relaxation-type oscillator circuits often yield a good compromise to emulate neurons. In this chapter, two exemplified relaxation-type silicon neurons are presented that emulate neural behaviour with energy consumption under the scale of nJ/spike. The first proposed fully CMOS relaxation SiN is based on mathematical Izhikevich model and can mimic a broad range of physiologically observable spike patterns. The results of kinds of biologically plausible output patterns and coupling process of two SiNs are presented in 0.35 $$\upmu $$ μ m CMOS technology. The second type is a novel ultra-low-frequency hybrid CMOS-memristive SiN based on relaxation oscillators and analog memristive devices. The hybrid SiN directly emulates neuron behaviour in the range of physiological spiking frequencies (less than 100 Hz). The relaxation oscillator is implemented and fabricated in 0.13 $$\upmu $$ μ m CMOS technology. An autonomous neuronal synchronization process is demonstrated with two relaxation oscillators coupled by an analog memristive device in the measurement to emulate the synchronous behaviour between spiking neurons.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3