1. Aghabozorgi, S., Wah, T., Amini, A., Saybani, M.: A new approach to present prototypes in clustering of time series. In: The 7th International Conference of Data Mining, vol. 28, no. 4, pp. 214–220 (2011). http://cerc.wvu.edu/download/WORLDCOMP’11/2011CDpapers/DMI2163.pdf%5Cn. http://cerc.wvu.edu/download/WORLDCOMP’11/2011CDpapers/DMI2163.pdf%5Cn. http://www.lidi.info.unlp.edu.ar/WorldComp2011-Mirror/DMI2163.pdf
2. Alger, S.J., Larget, B.R., Riters, L.V.: A novel statistical method for behaviour sequence analysis and its application to birdsong. Anim. Behav. 116, 181–193 (2016). https://doi.org/10.1016/j.anbehav.2016.04.001. https://doi.org/10.1016/j.anbehav.2016.04.001
3. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg (2006)
4. Ermon, S., Gomes, C.P., Sabharwal, A., Selman, B.: Designing fast absorbing Markov chains. https://www.aaai.org
5. Hunter, J.J.: Mixing times with applications to perturbed Markov chains. Linear Alg. Appl. 417, 108–123 (2006). https://doi.org/10.1016/j.laa.2006.02.008. www.elsevier.com/locate/laa