1. Albuquerque, T., Cruz, R., Cardoso, J.S.: Quasi-unimodal distributions for ordinal classification. Mathematics 10(6), 980 (2022)
2. Beckham, C., Pal, C.J.: Unimodal probability distributions for deep ordinal classification. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017. Proceedings of Machine Learning Research, vol. 70, pp. 411–419. PMLR (2017)
3. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Krishnapuram, B., Shah, M., Smola, A.J., Aggarwal, C.C., Shen, D., Rastogi, R. (eds.) Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13–17, 2016. pp. 785–794. ACM (2016)
4. da Costa, J.F.P., Alonso, H., Cardoso, J.S.: The unimodal model for the classification of ordinal data. Neural Netw. 21(1), 78–91 (2008)
5. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence);JP da Costa,2005