Author:
Hasan Cengis,Agapitos Alexandros,Lynch David,Castagna Alberto,Cruciata Giorgio,Wang Hao,Milenovic Aleksandar
Publisher
Springer Nature Switzerland
Reference33 articles.
1. Balevi, E., Andrews, J.G.: Online antenna tuning in heterogeneous cellular networks with deep reinforcement learning. IEEE Trans. Cogn. Commun. Netw. 5(4), 1113–1124 (2019). https://doi.org/10.1109/TCCN.2019.2933420
2. Biza, K., Tsamardinos, I., Triantafillou, S.: Out-of-sample tuning for causal discovery. IEEE Trans. Neural Netw. Learn. Syst. 1–11 (2022). https://doi.org/10.1109/TNNLS.2022.3185842
3. Bothe, S., Masood, U., Farooq, H., Imran, A.: Neuromorphic AI empowered root cause analysis of faults in emerging networks. In: IEEE International Black Sea Conference on Communications and Networking, BlackSeaCom 2020, Odessa, Ukraine, 26–29 May 2020. pp. 1–6. IEEE (2020). https://doi.org/10.1109/BlackSeaCom48709.2020.9235002
4. Bouton, M., Farooq, H., Forgeat, J., Bothe, S., Shirazipour, M., Karlsson, P.: Coordinated reinforcement learning for optimizing mobile networks (Sep 2021)
5. Calabrese, F.D., Wang, L., Ghadimi, E., Peters, G., Hanzo, L., Soldati, P.: Learning radio resource management in rans: Framework, opportunities, and challenges. IEEE Commun. Mag. 56, 138–145 (2018)