Short-Term Wind Speed Forecasting Model Using Hybrid Neural Networks and Wavelet Packet Decomposition

Author:

Lakzadeh Adel,Hassani Mohammad,Heydari Azim,Keynia Farshid,Groppi Daniele,Astiaso Garcia Davide

Abstract

AbstractWind speed is one of the most vital, imperative meteorological parameters, thus the prediction of which is of fundamental importance in the studies related to energy management, building construction, damages caused by strong winds, aquatic needs of power plants, the prevalence and spread of diseases, snowmelt, and air pollution. Due to the discrete and nonlinear structure of wind speed, wind speed forecasting at regular intervals is a crucial problem. In this regard, a wide variety of prediction methods have been applied. So far, many activities have been done in order to make optimal use of renewable energy sources such as wind, which have led to the present diverse types of wind speed and strength measuring methods in the various geographical locations. In this paper, a novel forecasting model based on hybrid neural networks (HNNs) and wavelet packet decomposition (WPD) processor has been proposed to predict wind speed. Considering this scenario, the accuracy of the proposed method is compared with other wind speed prediction methods to ensure performance improvement.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3