An Innovative Multi-objective Optimization Digital Workflow for Social Housing Deep Energy Renovation Design Process

Author:

Ciardiello Adriana,Dell’Olmo Jacopo,Rosso Federica,Pastore Lorenzo Mario,Ferrero Marco,Salata Ferdinando

Abstract

AbstractNowadays, the energy retrofit of the building sector is identified as a major instrument toward a climate-neutral Europe by 2050. In accordance with the European Renovation Wave program, deep energy renovations are needed, starting from public and less efficient buildings. Furthermore, the renovation of the social housing building stock is also an important response to energy poverty, as it could contribute safeguarding health and well-being of vulnerable citizens. In particular, buildings from the 1960–1980, which constitute a large portion of cities, often have high energy demand and low indoor comfort because most of them have been built before energy-efficiency regulations. In this context, the paper aims to propose a multi-objective approach toward energy renovation of the social housing building stock, by means of an innovative digital workflow. The objective functions are minimizing energy consumption, CO2 emissions, investment, and operational costs. Toward these contrasting objectives, numerous passive strategies are taken into account, which are compatible with the considered architecture. The optimal solutions are found by means of a genetic algorithm coupled with energy performance simulation software. The methodology is applied and verified on a significant and relevant case study, pertaining to the social housing building stock of Rome, Italy (Mediterranean climate). The outputs of the workflow are a set of optimal solutions among which to choose the fittest one depending on the need of the different stakeholders. The proposed multi-objective approach allows reducing the energy consumption for heating by 31% and for cooling by 17% and the CO2 emissions up to 27.4%. The proposed methodology supports designers and policymakers toward an effective building stock renovation, which can answer the urgent energy and environmental targets for the coming decades.

Publisher

Springer International Publishing

Reference16 articles.

1. Costa-Carrapiço I, Raslan R, González JN (2020) A systematic review of genetic algorithm-based multi-objective optimisation for building retrofitting strategies towards energy efficiency. Energy Build 210:109690. https://doi.org/10.1016/j.enbuild.2019.109690

2. EEA. Greenhouse gas emission intensity of electricity generation in Europe. https://www.eea.europa.eu/ims/greenhouse-gas-emission-intensity-of-1

3. European Commission (2020) A renovation wave for Europe—greening our buildings, creating jobs, improving lives

4. European Parliament (2012) Directive 2018/844/EU

5. European Parliament (2021) Proposal for a Directive of the European Parliament and of the Council on the energy performance of buildings, 15 Dec 2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3