1. Ambartsumian, S.A.: Theory of Anisotropic Plates: Strength, Stability, Vibration. Progress in Materials Science Series. Technomic Pub. Co., Stamford (1970)
2. Aßmus, M., Naumenko, K., Altenbach, H.: Subclasses of mechanical problems arising from the direct approach for homogeneous plates. In: Altenbach, H., Chróścielewski, J., Eremeyev, V.A., Wiśniewski, K. (eds.) Recent Developments in the Theory of Shells, Advanced Structured Materials, vol. 110, pp. 43–63. Springer, Singapore (2019)
3. Blinowski, A., Ostrowska-Maciejewska, J., Rychlewski, J.: Two-dimensional Hooke’s tensors—isotropic decomposition, effective symmetry criteria. Arch. Mech. 48(2), 325–345 (1996)
4. Brannon, R.M.: Rotation, Reflection, and Frame Changes: Orthogonal tensors in Computational Engineering Mechanics. IOP Publishing, Philadelphia, PA (2018)
5. Eremeyev, V.A., Cloud, M.J., Lebedev, L.P.: Applications of Tensor Analysis in Continuum Mechanics. World Scientific, Singapore/Hackensack/London (2018)