Publisher
Springer Nature Switzerland
Reference28 articles.
1. Abdar, M., et al.: A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf. Fusion 76, 243–297 (2021)
2. Ayhan, M.S., Berens, P.: Test-time data augmentation for estimation of heteroscedastic aleatoric uncertainty in deep neural networks. In: Medical Imaging with Deep Learning (2022)
3. Berti, V., Pupi, A., Mosconi, L.: PET/CT in diagnosis of movement disorders. Ann. N. Y. Acad. Sci. 1228(1), 93–108 (2011)
4. Buddenkotte, T., et al.: Calibrating ensembles for scalable uncertainty quantification in deep learning-based medical image segmentation. Comput. Biol. Med. 163, 107096 (2023)
5. Combalia, M., Hueto, F., Puig, S., Malvehy, J., Vilaplana, V.: Uncertainty estimation in deep neural networks for dermoscopic image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 744–745 (2020)