Publisher
Springer Nature Switzerland
Reference12 articles.
1. Anaraki, A.K., Ayati, M., Kazemi, F.: Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybernet. Biomed. Eng. 39(1), 63–74 (2019)
2. Bakas, S., Reyes, M., Jakab, M., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)
3. Behin, A., Hoang-Xuan, K., Carpentier, A.F., Delattre, J.Y.: Primary brain tumours in adults. The Lancet 361(9354), 323–331 (2003)
4. Kumar, R., Gupta, A., et al.: CGHF: a computational decision support system for glioma classification using hybrid radiomics-and stationary wavelet-based features. IEEE Access 8, 79440–79458 (2020)
5. Niu, J., Tan, Q., Zou, X., Jin, S.: Accurate prediction of glioma grades from radiomics using a multi-filter and multi-objective-based method. Math. Biosci. Eng. 20(2), 2890–2907 (2023)