1. Vagliano, I., Galke, L., Scherp, A.: Recommendations for item set completion: on the semantics of item co-occurrence with data sparsity, input size, and input modalities. Information Retrieval Journal 25, 269–305 (2022)
2. Galke, L., Mai, F., Vagliano, I., Scherp, A.: Multi-Modal Adversarial Autoencoders for Recommendations of Citations and Subject Labels. Proceedings 26th Conference on User Modeling, Adaptation and Personalization, pp. 197–205. ACM (2018)
3. Johnson, A.E.W., Pollard, T.J., Shen, L., Lehman, L.-w.H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Anthony Celi, L., Mark, R.G.: MIMIC-III, a freely accessible critical care database. Scientific Data 3, 160035 (2016)
4. Lovelace, J., Hurley, N.C., Haimovich, A.D., Mortazavi, B.J.: Dynamically Extracting Outcome-Specific Problem Lists from Clinical Notes with Guided Multi-Headed Attention. In: Finale, D.-V., Jim, F., Ken, J., David, K., Rajesh, R., Byron, W., Jenna, W. (eds.) Proceedings of the 5th Machine Learning for Healthcare Conference, vol. 126, pp. 245--270. PMLR, Proceedings of Machine Learning Research (2020)
5. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. JMLR 11, 3371–3408 (2010)