1. Lei, Y., Lin, J., He, Z., Zuo, M.J.: A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Sig. Process. 35(1), 108–126 (2019)
2. Shao, H., Jiang, H., Zhang, H., Duan, W., Liang, T., Wu, S.: Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing. Mech. Syst. Sig. Process. 100(1), 743–765 (2018)
3. Eren, L., Ince, T., Kiranyaz, S.: A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier. J. Sig. Process. Syst. 91(1), 179–189
4. Chen, X., Zhang, B., Gao, D.: Bearing fault diagnosis base on multi-scale CNN and LSTM model. Intell. Manuf. 32(2021), 971–987 (2019)
5. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size (2018). arXiv preprint arXiv:1602.07360