Impact of Supercooled Drops onto Cold Surfaces

Author:

Gloerfeld Mark,Schremb Markus,Criscione Antonio,Jakirlic Suad,Tropea Cameron

Abstract

AbstractIce accretion resulting from the impact of supercooled water drops is a hazard for structures exposed to low temperatures, for instance aircraft wings and wind turbine blades. Despite a multitude of studies devoted to the involved phenomena, the underlying physical processes are not yet entirely understood. Hence, modelling of the conditions for ice accretion and prediction of the ice accretion rate are presently not reliable. The research conducted in this study addresses these deficiencies in order to lend insight into the physical processes involved. While presenting an overview of results obtained during the first funding periods of this project, new results are also presented, relating to the impact of supercooled drops onto a cold surface in a cold air flow. The experiments are conducted in a dedicated icing wind tunnel and involve measuring the residual mass after impact of a liquid supercooled drop exhibiting corona splash as well as the impact of dendritic frozen drops onto a solid surface.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3