Stopping Droplet Rebound with Polymer Additives: A Molecular Viewpoint

Author:

Lee Eunsang,Krishna Chilukoti Hari,Müller-Plathe Florian

Abstract

AbstractThe origin of rebound suppression of an impacting droplet by a small amount of polymer additive has been tentatively explained by various physical concepts including the dynamic surface tension, the additional energy dissipation by non-Newtonian elongational viscosity, the elastic force of stretched polymer, and the additional friction on a receding contact line. To better understand the role of polymer on a molecular level, we performed multi-body dissipative particle dynamics simulations of droplets impacting on solvophobic surfaces. The rebound suppression is achieved by the elastic force of stretched polymer during the hopping stage, and the additional friction on the contact line during the retraction stage. Both slow-hopping and slow-retraction mechanisms coexist in a wide range of simulation parameters, but the latter is prevailing for large droplets, and for the strong attraction strength between polymer and surface. The increased polymer adsorption, which maybe achieved by a higher polymer concentration or a larger molecular weight, stimulates both mechanisms. Also, the molecular evidence of the additional friction on the receding contact line is shown from the relation between the contact angle and the contact line velocity where the slope of the fitted line is an indication of the additional friction.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3