1. Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., Erhan, D.: Domain separation networks. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R., editors, Advances in Neural Information Processing Systems, vol. 29. Curran Associates Inc., (2016)
2. Ye, S., et al.: Light-weight calibrator: a separable component for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13736–13745 (2020)
3. Wang, J., Chen, J., Lin, J., Sigal, L., de Silva, C.W.: Discriminative feature alignment: Improving transferability of unsupervised domain adaptation by gaussian-guided latent alignment. Pattern Recogn. 116, 107943 (2021)
4. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105. PMLR (2015)
5. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1), 151–175 (2010)