Author:
Zhang Guanglin,Zhao Ping,Zhang Anqi
Publisher
Springer Nature Switzerland
Reference70 articles.
1. A. Abdallah and X. S. Shen. A lightweight lattice-based homomorphic privacy-preserving data aggregation scheme for smart grid. IEEE Transactions on Smart Grid, 9(1):396–405, 2018.
2. N. M. Ahmad, A. H. M. Amin, S. Kannan, A. M. M. Ali, M. F. Abdollah, and R. Yusof. A passive and privacy-friendly area based localization for wireless indoor networks. In Proc. Of IEEE Region 10 Symposium (TENSYMP), 2016.
3. Amal Al-Husseiny and Neal Patwari. Unsupervised learning of signal strength models for device-free localization. In Proc. Of IEEE International Symposium on ” A World of Wireless, Mobile and Multimedia Networks” (WoWMoM).
4. N. Alikhani, V. Moghtadaiee, A. M. Sazdar, and S. A. Ghorashi. A privacy preserving method for crowdsourcing in indoor fingerprinting localization. In 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE), pages 58–62, 2018.
5. Patrick Armengol, Rachelle Tobkes, Kemal Akkaya, Bekir S Ciftler, and Ismail Güvenç. Efficient Privacy-Preserving Fingerprint-Based Indoor Localization Using Crowdsourcing. In Proc. Of IEEE MASS, 2015.