1. Aich, S., Younga, K., Hui, K.L., Al-Absi, A.A., Sain, M.: A nonlinear decision tree based classification approach to predict the Parkinson’s disease using different feature sets of voice data. In: 2018 20th International Conference on Advanced Communication Technology (ICACT), pp. 638–642 (2018)
2. Bala, J., Huang, J., Vafaie, H., Dejong, K., Wechsler, H.: Hybrid learning using genetic algorithms and decision trees for pattern classification. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, IJCAI 1995, vol. 1, p. 719–724. Morgan Kaufmann Publishers Inc., San Francisco (1995)
3. Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., Lang, M.: Benchmark for filter methods for feature selection in high-dimensional classification data. Comput. Stat. Data Anal. 143, 106839 (2020). https://doi.org/10.1016/j.csda.2019.106839
4. Breiman, L.: Random Forests. Mach. Learn. 45(1), 5–32 (2001)
5. Brown, G.W.: Iterative solution of games by fictitious play. Act. Anal. Prod. Allocation 13(1), 374–376 (1951)