Publisher
Springer International Publishing
Reference14 articles.
1. Odhiambo, L.O., Yoder, R.E., Yoder, D.C.: Estimation of reference crop evapotranspiration using fuzzy state models. Trans. ASAE 44, 543–550 (2001)
2. Allen, R.G., Pereira, L.S., Raes, D., Smith, M.: Crop evapotranspiration-guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. FAO, Rome, 300(9) (1998)
3. Ladlani, I., Houichi, L., Djemili, L., Heddam, S., Belouz, K.: Estimation of daily reference evapotranspiration (ET0) in the North of Algeria using adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) models: a comparative study. Arab. J. Sci. Eng. 39, 5959–5969 (2014).
https://doi.org/10.1007/s13369-014-1151-2
4. Abdullahi, J., Elkiran, G.: Prediction of the future impact of climate change on reference evapotranspiration in Cyprus using artificial neural network. In: 9th International Conference on Theory and Application of Soft Computing, Computing with Words and Perception, pp. 276–283. Elsevier, London (2017).
https://doi.org/10.1016/j.procs.2017.11.239
5. Antonopoulos, V.Z., Antonopoulos, A.V.: Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables. Comput. Electron. Agric. 132, 86–96 (2017).
https://doi.org/10.1016/j.compag.2016.11.011
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献