Neural Precedence Recommender

Author:

Bártek FilipORCID,Suda MartinORCID

Abstract

AbstractThe state-of-the-art superposition-based theorem provers for first-order logic rely on simplification orderings on terms to constrain the applicability of inference rules, which in turn shapes the ensuing search space. The popular Knuth-Bendix simplification ordering is parameterized by symbol precedence—a permutation of the predicate and function symbols of the input problem’s signature. Thus, the choice of precedence has an indirect yet often substantial impact on the amount of work required to complete a proof search successfully.This paper describes and evaluates a symbol precedence recommender, a machine learning system that estimates the best possible precedence based on observations of prover performance on a set of problems and random precedences. Using the graph convolutional neural network technology, the system does not presuppose the problems to be related or share a common signature. When coupled with the theorem prover Vampire and evaluated on the TPTP problem library, the recommender is found to outperform a state-of-the-art heuristic by more than 4 % on unseen problems.

Publisher

Springer International Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning Guided Automated Reasoning: A Brief Survey;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3