Politeness and Stable Infiniteness: Stronger Together

Author:

Sheng YingORCID,Zohar YoniORCID,Ringeissen ChristopheORCID,Reynolds AndrewORCID,Barrett ClarkORCID,Tinelli CesareORCID

Abstract

AbstractWe make two contributions to the study of polite combination in satisfiability modulo theories. The first is a separation between politeness and strong politeness, by presenting a polite theory that is not strongly polite. This result shows that proving strong politeness (which is often harder than proving politeness) is sometimes needed in order to use polite combination. The second contribution is an optimization to the polite combination method, obtained by borrowing from the Nelson-Oppen method. The Nelson-Oppen method is based on guessing arrangements over shared variables. In contrast, polite combination requires an arrangement over all variables of the shared sorts. We show that when using polite combination, if the other theory is stably infinite with respect to a shared sort, only the shared variables of that sort need be considered in arrangements, as in the Nelson-Oppen method. The time required to reason about arrangements is exponential in the worst case, so reducing the number of variables considered has the potential to improve performance significantly. We show preliminary evidence for this by demonstrating a speed-up on a smart contract verification benchmark.

Publisher

Springer International Publishing

Reference22 articles.

1. Amsden, Z., Arora, R., Bano, S., Baudet, M., Blackshear, S., Bothra, A., Cabrera, G., Catalini, C., Chalkias, K., Cheng, E., Ching, A., Chursin, A., Danezis, G., Giacomo, G.D., Dill, D.L., Ding, H., Doudchenko, N., Gao, V., Gao, Z., Garillot, F., Gorven, M., Hayes, P., Hou, J.M., Hu, Y., Hurley, K., Lewi, K., Li, C., Li, Z., Malkhi, D., Margulis, S., Maurer, B., Mohassel, P., de Naurois, L., Nikolaenko, V., Nowacki, T., Orlov, O., Perelman, D., Pott, A., Proctor, B., Qadeer, S., Rain, Russi, D., Schwab, B., Sezer, S., Sonnino, A., Venter, H., Wei, L., Wernerfelt, N., Williams, B., Wu, Q., Yan, X., Zakian, T., Zhou, R.: The Diem Blockchain. https://developers.diem.com/docs/technical-papers/the-diem-blockchain-paper/ (2019)

2. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech. rep., Department of Computer Science, The University of Iowa (2017), available at www.SMT-LIB.org

3. Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6806, pp. 171–177. Springer (2011), https://doi.org/10.1007/978-3-642-22110-1_14

4. Barrett, C.W., Shikanian, I., Tinelli, C.: An abstract decision procedure for a theory of inductive data types. Journal on Satisfiability, Boolean Modeling and Computation 3(1–2), 21–46 (2007)

5. Barrett, C.W., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 305–343. Springer (2018), https://doi.org/10.1007/978-3-319-10575-8_11

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3