Publisher
Springer Nature Switzerland
Reference32 articles.
1. Antonellis, P., et al.: Clustering for monitoring software systems maintainability evolution. Electron Notes Theor. Comput. Sci. 233, 43–57 (2009). https://doi.org/10.1016/j.entcs.2009.02.060
2. Tjortjis, C.: Mining association rules from code (MARC) to support legacy software management. Softw. Qual. J. 28(2), 633–662 (2020)
3. Shepperd, M., Bowes, D., Hall, T.: Researcher bias: the use of machine learning in software defect prediction. IEEE Trans. Software Eng. 40(6), 603–616 (2014). https://doi.org/10.1109/TSE.2014.2322358
4. Arshad, S., Tjortjis, C.: Clustering software metric values extracted from C# code for maintainability assessment. In: Proceedings of the 9th Hellenic Conference on Artificial Intelligence, pp. 1–4 (2016)
5. Perreault, L., Berardinelli, S., Izurieta, C., Sheppard, J.: Using classifiers for software defect detection. In: 26th International Conference on Software Engineering and Data Engineering, pp. 2–4 (2017)