Secure Model Fusion for Distributed Learning Using Partial Homomorphic Encryption

Author:

Liu Changchang,Chakraborty Supriyo,Verma Dinesh

Publisher

Springer International Publishing

Reference20 articles.

1. McMahan, H.B., Moore, E., Ramage, D., Hampson, S.: Communication-efficient learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629 (2016)

2. Bonawitz, K., et al.: Practical secure aggregation for federated learning on user-held data. arXiv preprint arXiv:1611.04482 (2016)

3. Verma, D., Julier, S., Cirincione, G.: Federated AI for building AI solutions across multiple agencies. In: AAAI FSS-18: Artificial Intelligence in Government and Public Sector, Arlington, VA, USA (2018)

4. Wang, S., et al.: When edge meets learning: adaptive control for resource-constrained distributed machine learning. In: IEEE International Conference on Computer Communications (2018)

5. Verma, D., Chakraborty, S., Calo, S., Julier, S., Pasteris, S.: An algorithm for model fusion for distributed learning. In: Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR IX, vol. 10635, p. 106350O. International Society for Optics and Photonics (2018)

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An efficient privacy-preserving and verifiable scheme for federated learning;Future Generation Computer Systems;2024-11

2. Recent advances on federated learning: A systematic survey;Neurocomputing;2024-09

3. Efficiency Optimization Techniques in Privacy-Preserving Federated Learning With Homomorphic Encryption: A Brief Survey;IEEE Internet of Things Journal;2024-07-15

4. Accelerating Privacy-Preserving Machine Learning With GeniBatch;Proceedings of the Nineteenth European Conference on Computer Systems;2024-04-22

5. QFL: Federated Learning Acceleration Based on QAT Hardware Accelerator;International Conference on Computing, Machine Learning and Data Science;2024-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3