1. McMahan, H.B., Moore, E., Ramage, D., Hampson, S.: Communication-efficient learning of deep networks from decentralized data. arXiv preprint
arXiv:1602.05629
(2016)
2. Bonawitz, K., et al.: Practical secure aggregation for federated learning on user-held data. arXiv preprint
arXiv:1611.04482
(2016)
3. Verma, D., Julier, S., Cirincione, G.: Federated AI for building AI solutions across multiple agencies. In: AAAI FSS-18: Artificial Intelligence in Government and Public Sector, Arlington, VA, USA (2018)
4. Wang, S., et al.: When edge meets learning: adaptive control for resource-constrained distributed machine learning. In: IEEE International Conference on Computer Communications (2018)
5. Verma, D., Chakraborty, S., Calo, S., Julier, S., Pasteris, S.: An algorithm for model fusion for distributed learning. In: Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR IX, vol. 10635, p. 106350O. International Society for Optics and Photonics (2018)