3D CNN Architectures and Attention Mechanisms for Deepfake Detection

Author:

Roy Ritaban,Joshi Indu,Das Abhijit,Dantcheva Antitza

Abstract

AbstractManipulated images and videos have become increasingly realistic due to the tremendous progress of deep convolutional neural networks (CNNs). While technically intriguing, such progress raises a number of social concerns related to the advent and spread of fake information and fake news. Such concerns necessitate the introduction of robust and reliable methods for fake image and video detection. Toward this in this work, we study the ability of state-of-the-art video CNNs including 3D ResNet, 3D ResNeXt, and I3D in detecting manipulated videos. In addition, and toward a more robust detection, we investigate the effectiveness of attention mechanisms in this context. Such mechanisms are introduced in CNN architectures in order to ensure that robust features are being learnt. We test two attention mechanisms, namely SE-block and Non-local networks. We present related experimental results on videos tampered by four manipulation techniques, as included in the FaceForensics++ dataset. We investigate three scenarios, where the networks are trained to detect (a) all manipulated videos, (b) each manipulation technique individually, as well as (c) the veracity of videos pertaining to manipulation techniques not included in the train set.

Publisher

Springer International Publishing

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Deepfake Detection using SE Block Attention with CNN;2024 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD);2024-08-01

2. Unmasking Deepfakes - Harnessing the Potential of 2D and 3D Convolutional Neural Network Ensembles;2024 5th International Conference on Innovative Trends in Information Technology (ICITIIT);2024-03-15

3. A defensive attention mechanism to detect deepfake content across multiple modalities;Multimedia Systems;2024-02

4. Integrating 3dcnn Attention Mechanism with Pose Estimation for Indoor Fall Detection;2024

5. Attention-based Multimodal learning framework for Generalized Audio- Visual Deepfake Detection;2023-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3