Author:
Bannigidad Parashuram,Deshpande Asmita
Publisher
Springer International Publishing
Reference17 articles.
1. Satyananda, V., Karibasappa, N.K.V.: FPGA and MATLAB based solution for retinal exudate detection. Int. J. Recent Technol. Eng. (IJRTE) 8(6), 727–234 (2020). ISSN: 2277-3878
2. Rajput, Y.M., Manza, R.R., Patwari, M.B.: Extraction of cotton wool spot using multi resolution analysis and classification using K-means clustering. Int. J. Comput. (2015). National Conference on Digital Image and Signal Processing, vol. DISP 2015, no. 1, pp. 6–10
3. Giancardo, L., Meriaudeau, F., Karnowski, T.P., Yi, L., Tobin, K.: Automatic retina exudates segmentation without a manually labelled training set. In: International Symposium on Biomedical Imaging, pp. 1–6 (2011)
4. Long, S., Huang, X., Chen, Z., Pardhan, S., Zheng, D.: Automatic detection of hard exudates in color retinal images using dynamic threshold and SVM classification: algorithm development and evaluation. BioMed Res. Int. 2019, 1–3 (2019)
5. Borsos, B., Nagy, L., Iclănzan, D., Szilágyi, L.: Automatic detection of hard and soft exudates from retinal fundus images. Acta Univ. Sapientiae Informatica 11(1), 65–79 (2019)