1. Arbinger, C., Bullin, M., Henrich, A.: Exploiting geodata to improve image recognition with deep learning. In: Companion Proceedings of the Web Conference 2022, WWW 2022, pp. 648–655. ACM, New York, NY, USA (2022). https://doi.org/10.1145/3487553.3524645
2. Boutell, M., Luo, J.: Beyond pixels: exploiting camera metadata for photo classification. Pattern Recogn. 38(6), 935–946 (2005). https://doi.org/10.1016/j.patcog.2004.11.013, https://www.sciencedirect.com/science/article/pii/S0031320304003978
3. Electronics, J., Information Technology Industries Association, J.: Exchangeable image file format for digital still cameras: Exif version 2.32. Technical report, Camera & Imaging Products Association, May 2019. https://www.cipa.jp/std/documents/download_e.html?DC-008-Translation-2019-E
4. Emmanuel, T., Maupong, T., Mpoeleng, D., Semong, T., Mphago, B., Tabona, O.: A survey on missing data in machine learning. J. Big Data 8(1), 140 (2021). https://doi.org/10.1186/s40537-021-00516-9
5. Fisher, A., Rudin, C., Dominici, F.: All models are wrong, but many are useful: learning a variable’s importance by studying an entire class of prediction models simultaneously. J. Mach. Learn. Res. JMLR 20, 177 (2019)