Publisher
Springer International Publishing
Reference19 articles.
1. Bontempi, G., Flauder, M.: From dependency to causality: a machine learning approach. J. Mach. Learn. Res. 16(1), 2437–2457 (2015)
2. Durante, F., Sempi, C.: Principles of Copula Theory. Chapman and Hall/CRC, Boca Raton (2015)
3. Hauke, J., Kossowski, T.: Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Quaestiones Geographicae 30(2), 87–93 (2011)
4. Hyttinen, A., Eberhardt, F., Hoyer, P.O.: Learning linear cyclic causal models with latent variables. J. Mach. Learn. Res. 13(1), 3387–3439 (2012)
5. Janzing, D., Steudel, B., Shajarisales, N., Schölkopf, B.: Justifying information-geometric causal inference. In: Vovk, V., Papadopoulos, H., Gammerman, A. (eds.) Measures of Complexity, pp. 253–265. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21852-6_18