Separators in Continuous Petri Nets

Author:

Blondin MichaelORCID,Esparza JavierORCID

Abstract

AbstractLeroux has proved that unreachability in Petri nets can be witnessed by a Presburger separator, i.e. if a marking $$\boldsymbol{m}_\text {src}$$ m src cannot reach a marking $$\boldsymbol{m}_\text {tgt}$$ m tgt , then there is a formula $$\varphi $$ φ of Presburger arithmetic such that: $$\varphi (\boldsymbol{m}_\text {src})$$ φ ( m src ) holds; $$\varphi $$ φ is forward invariant, i.e., $$\varphi (\boldsymbol{m})$$ φ ( m ) and $$\boldsymbol{m} \rightarrow \boldsymbol{m}'$$ m m imply $$\varphi (\boldsymbol{m}'$$ φ ( m ); and $$\lnot \varphi (\boldsymbol{m}_\text {tgt})$$ ¬ φ ( m tgt ) holds. While these separators could be used as explanations and as formal certificates of unreachability, this has not yet been the case due to their (super-)Ackermannian worst-case size and the (super-)exponential complexity of checking that a formula is a separator. We show that, in continuous Petri nets, these two problems can be overcome. We introduce locally closed separators, and prove that: (a) unreachability can be witnessed by a locally closed separator computable in polynomial time; (b) checking whether a formula is a locally closed separator is in NC (so, simpler than unreachablity, which is P-complete).

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3