Quantifier elimination for counting extensions of Presburger arithmetic

Author:

Chistikov DmitryORCID,Haase ChristophORCID,Mansutti AlessioORCID

Abstract

AbstractWe give a new quantifier elimination procedure for Presburger arithmetic extended with a unary counting quantifier $$\exists ^{= x} y\, \mathrm {\Phi }$$ = x y Φ that binds to the variable $$x$$ x the number of different $$y$$ y satisfying $$\mathrm {\Phi }$$ Φ . While our procedure runs in non-elementary time in general, we show that it yields nearly optimal elementary complexity results for expressive counting extensions of Presburger arithmetic, such as the threshold counting quantifier $$\exists ^{\ge c} y\, \mathrm {\Phi }$$ c y Φ that requires that the number of different y satisfying $$\mathrm {\Phi }$$ Φ be at least $$c\in \mathbb {N}$$ c N , where c can succinctly be defined by a Presburger formula. Our results are cast in terms of what we call the monadically-guarded fragment of Presburger arithmetic with unary counting quantifiers, for which we develop a 2ExpSpace decision procedure.

Publisher

Springer International Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Presburger arithmetic extended with non-unary counting quantifiers;Logical Methods in Computer Science;2023-07-12

2. Geometric decision procedures and the VC dimension of linear arithmetic theories;Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science;2022-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3