Author:
Hao Junfeng,Chen Juan,Chen Peng,Wang Yang,Niu Xianhua,Xu Lei,Xia Yunni
Publisher
Springer Nature Switzerland
Reference39 articles.
1. Cook, A.A., Mısırlı, G., Fan, Z.: Anomaly detection for IoT time-series data: a survey. IEEE Internet Things J. 7(7), 6481–6494 (2019)
2. Peng, C., Yunni, X., Shanchen, P., et al.: A probabilistic model for performance analysis of cloud infrastructures. Concurrency Comput. Pract. Experience 27(17), 4784–4796 (2015)
3. Bonawitz, K., Eichner, H., Grieskamp, W., et al.: Towards federated learning at scale: system design. Proc. Mach. Learn. Syst. 1, 374–388 (2019)
4. McMahan, B., Moore, E., Ramage, D., et al.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, PMLR, pp. 1273–1282 (2017)
5. Liu, Y., Garg, S., Nie, J., et al.: Deep anomaly detection for time-series data in industrial IoT: a communication-efficient on-device federated learning approach[J]. IEEE Internet Things J. 8(8), 6348–6358 (2020)