Massively Parallel Genetic Optimization Through Asynchronous Propagation of Populations

Author:

Taubert OskarORCID,Weiel MarieORCID,Coquelin DanielORCID,Farshian AnisORCID,Debus CharlotteORCID,Schug AlexanderORCID,Streit AchimORCID,Götz MarkusORCID

Abstract

AbstractWe present , an evolutionary optimization algorithm and software package for global optimization and in particular hyperparameter search. For efficient use of HPC resources, omits the synchronization after each generation as done in conventional genetic algorithms. Instead, it steers the search with the complete population present at time of breeding new individuals. We provide an MPI-based implementation of our algorithm, which features variants of selection, mutation, crossover, and migration and is easy to extend with custom functionality. We compare to the established optimization tool . We find that is up to three orders of magnitude faster without sacrificing solution accuracy, demonstrating the efficiency and efficacy of our lazy synchronization approach. Code and documentation are available at https://github.com/Helmholtz-AI-Energy/propulate/.

Publisher

Springer Nature Switzerland

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ReCycle: Fast and Efficient Long Time Series Forecasting with Residual Cyclic Transformers;2024 IEEE Conference on Artificial Intelligence (CAI);2024-06-25

2. PETNet–Coincident Particle Event Detection using Spiking Neural Networks;2024 Neuro Inspired Computational Elements Conference (NICE);2024-04-23

3. Design of Cluster-Computing Architecture to Improve Training Speed of the Neuroevolution Algorithm;Lecture Notes in Networks and Systems;2024

4. Short Paper: Accelerating Hyperparameter Optimization Algorithms with Mixed Precision;Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis;2023-11-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3