Refining Natural Language Inferences Using Cross-Document Structure Theory

Author:

Janz ArkadiuszORCID,Kurowski DominikORCID,Baran JoannaORCID,Moska JuliaORCID,Bernaś TomaszORCID,Oleksy MarcinORCID

Publisher

Springer Nature Switzerland

Reference25 articles.

1. Bentivogli, L., Bernardi, R., Marelli, M., Menini, S., Baroni, M., Zamparelli, R.: SICK through the SemEval glasses. Lesson learned from the evaluation of compositional distributional semantic models on full sentences through semantic relatedness and textual entailment. Lang. Resour. Eval. 50, 95–124 (2016)

2. Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus for learning natural language inference. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, pp. 632–642. Association for Computational Linguistics (2015)

3. Cardoso, P.C., et al.: CSTNews - a discourse-annotated corpus for single and multi-document summarization of news texts in Brazilian Portuguese. In: Proceedings of the 3rd RST Brazilian Meeting, Cuiabá, Brazil, pp. 88–105 (2011)

4. Clark, C., Lee, K., Chang, M.W., Kwiatkowski, T., Collins, M., Toutanova, K.: BoolQ: exploring the surprising difficulty of natural yes/no questions. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long and Short Papers), Minneapolis, Minnesota, pp. 2924–2936. Association for Computational Linguistics (2019)

5. Conneau, A., et al.: Unsupervised cross-lingual representation learning at scale. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 8440–8451. Association for Computational Linguistics, Online (2020)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3