Author:
Tolegen Gulmira,Toleu Alymzhan,Mussabayev Rustam
Publisher
Springer Nature Switzerland
Reference24 articles.
1. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence);D Akhmed-Zaki,2020
2. Brown, T., et al.: Language models are few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901. Curran Associates, Inc. (2020)
3. Das, S.S.S., Katiyar, A., Passonneau, R., Zhang, R.: CONTaiNER: few-shot named entity recognition via contrastive learning. In: Muresan, S., Nakov, P., Villavicencio, A. (eds.) Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 6338–6353. Association for Computational Linguistics, Dublin (2022). https://doi.org/10.18653/v1/2022.acl-long.439
4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis (2019). https://doi.org/10.18653/v1/N19-1423
5. Eftimov, T., Seljak, B.K., Korošec, P.: A rule-based named-entity recognition method for knowledge extraction of evidence-based dietary recommendations. PLoS One 12 (2017)