Multimodal Encoders for Food-Oriented Cross-Modal Retrieval
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-030-85899-5_19
Reference32 articles.
1. Carvalho, M., Cadène, R., Picard, D., Soulier, L., Thome, N., Cord, M.: Cross-modal retrieval in the cooking context: learning semantic text-image embeddings. In: Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 35–44 (2018)
2. Peng, Y., Huang, X., Zhao, Y.: An overview of cross-media retrieval: concepts, methodologies, benchmarks, and challenges. IEEE Trans. Circuits Syst. Video Technol. 28(9), 2372–2385 (2017)
3. Wang, Y., Lin, X., Wu, L., Zhang, W.: Effective multi-query expansions: collaborative deep networks for robust landmark retrieval. IEEE Trans. Image Process. 26(3), 1393–1404 (2017)
4. Wang, Y., Lin, X., Wu, L., Zhang, W., Zhang, Q.: LBMCH: learning bridging mapping for cross-modal hashing. In: Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval, pp. 999–1002 (2015)
5. Wu, L., Wang, Y., Shao, L.: Cycle-consistent deep generative hashing for cross-modal retrieval. IEEE Trans. Image Process. 28(4), 1602–1612 (2018)
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Disambiguity and Alignment: An Effective Multi-Modal Alignment Method for Cross-Modal Recipe Retrieval;Foods;2024-05-23
2. CREAMY: Cross-Modal Recipe Retrieval By Avoiding Matching Imperfectly;IEEE Access;2024
3. DADR: A Denoising Approach for Dense Retrieval Model Training;Lecture Notes in Computer Science;2024
4. Exploring latent weight factors and global information for food-oriented cross-modal retrieval;Connection Science;2023-07-28
5. Efficient low-rank multi-component fusion with component-specific factors in image-recipe retrieval;Multimedia Tools and Applications;2023-05-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3