1. Baker, M.: 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016). https://doi.org/10.1038/533452a
2. Liu, C., Gao, C., Xia, X., Lo, D., Grundy, J., Yang, X.: On the reproducibility and replicability of deep learning in software engineering. ACM Trans. Softw. Eng. Methodol. 31(1), 1–46 (2022). https://doi.org/10.1145/3477535
3. Pineau, J., et al.: Improving reproducibility in machine learning research (a report from the NeurIPS 2019 reproducibility program). J. Mach. Learn. Res. 22(164), 1–20 (2021). http://jmlr.org/papers/v22/20-303.html
4. Tatman, R., Vanderplas, J., Dane, S.: A practical taxonomy of reproducibility for machine learning research. In: Reproducibility in Machine Learning - Workshop at ICML (2018)
5. Tomaszewska, P., Lampert, C.H.: Lightweight conditional model extrapolation for streaming data under class-prior shift. In: 26th International Conference on Pattern Recognition (2022)