Author:
Chattopadhyay Eshan,Li Xin
Publisher
Springer International Publishing
Reference61 articles.
1. Aggarwal, D.: Affine-evasive sets modulo a prime. Inf. Process. Lett. 115(2), 382–385 (2015)
2. Aggarwal, D., Briët, J.: Revisiting the sanders-Bogolyubov-Ruzsa theorem in Fpn and its application to non-malleable codes. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 1322–1326. IEEE (2016)
3. Aggarwal, D., et al.: Stronger leakage-resilient and non-malleable secret-sharing schemes for general access structures. IACR Crypt. ePrint Arch. 2018, 1147 (2018)
4. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and applications. In: Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, pp. 459–468. ACM (2015)
5. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. SIAM J. Comput. 47(2), 524–546 (2018)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Non-malleable Codes with Optimal Rate for Poly-Size Circuits;Lecture Notes in Computer Science;2024
2. Extractors for sum of two sources;Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing;2022-06-09