1. Akhtar, N., Liu, J., Mian, A.: Defense against universal adversarial perturbations. arXiv preprint
arXiv:1711.05929
(2017)
2. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence);B Biggio,2013
3. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57 (2017)
4. Dziugaite, G.K., Ghahramani, Z., Roy, D.M.: A study of the effect of JPG compression on adversarial images. arXiv preprint
arXiv:1608.00853
(2016)
5. Gao, J., Wang, B., Lin, Z., Xu, W., Qi, Y.: DeepCloak: masking deep neural network models for robustness against adversarial samples. arXiv preprint
arXiv:1702.06763
(2017)