Author:
Wrzalik Marco,Eversheim Julian,Villmow Johannes,Ulges Adrian,Krechel Dirk,Spieckermann Sven,Forstner Robert
Publisher
Springer Nature Switzerland
Reference10 articles.
1. Becker, T., Funke, T.: Machine learning methods for prediction of changes in material flow networks. Procedia CIRP 93, 485–490 (2020). https://doi.org/10.1016/j.procir.2020.04.030
2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324
3. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011). https://doi.org/10.5555/1953048.2078195
4. Rossi, A., Barbosa, D., Firmani, D., Matinata, A., Merialdo, P.: Knowledge graph embedding for link prediction: a comparative analysis. ACM Trans. Knowl. Discov. Data 15(2), 14:1–14:49 (2021). https://doi.org/10.1145/3424672
5. Rother, M., Shook, J.: Learning to See: Value Stream Mapping to Create Value and Eliminate Muda. Lean Enterprise Institute (1999)