1. Amin, K., Dick, T., Kulesza, A., Munoz, A., Vassilvitskii, S.: Differentially private covariance estimation. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 32. Curran Associates, Inc. (2019). proceedings.neurips.cc/paper/2019/file/4158f6d19559955bae372bb00f6204e4-Paper.pdf
2. Lecture Notes in Computer Science;P Bogetoft,2009
3. Canonne, C.L., Kamath, G., McMillan, A., Smith, A., Ullman, J.: The structure of optimal private tests for simple hypotheses. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 310–321 (2019)
4. Couch, S., Kazan, Z., Shi, K., Bray, A., Groce, A.: Differentially private nonparametric hypothesis testing. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 737–751 (2019)
5. De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.: The mahalanobis distance. Chemomet. Intell. Lab. Syst.50(1), 1–18 (2000). https://doi.org/10.1016/S0169-7439(99)00047-7. www.sciencedirect.com/science/article/pii/S0169743999000477