Publisher
Springer International Publishing
Reference24 articles.
1. Antropova, N., Abe, H., Giger, M.L.: Use of clinical MRI maximum intensity projections for improved breast lesion classification with deep convolutional neural networks. J. Med. Imaging 5(01), 1 (2018). https://doi.org/10.1117/1.jmi.5.1.014503
2. Balleyguier, C., Ayadi, S., Nguyen, K.V., Vanel, D., Dromain, C., Sigal, R.: BIRADS™ classification in mammography. Eur. J. Radiol. 61(2), 192–194 (2007). https://doi.org/10.1016/j.ejrad.2006.08.033
3. Buda, M., et al.: Detection of masses and architectural distortions in digital breast tomosynthesis: a publicly available dataset of 5,060 patients and a deep learning model. arXiv:eess.IV/2011.07995 (2021)
4. Conant, E.F., et al.: Improving accuracy and efficiency with concurrent use of artificial intelligence for digital breast tomosynthesis. Radiol. Artif. Intell. 1(4), e180096 (2019). https://doi.org/10.1148/ryai.2019180096
5. DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L.: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44(3), 837–845 (1988)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献