Author:
García-Trujillo Oscar-Alejandro,Herazo Luis Carlos Sandoval,Sánchez-DelaCruz Eddy,Moreno Raymundo González
Publisher
Springer Nature Switzerland
Reference22 articles.
1. Chen, C., Hui, Q., Xie, W., Wan, S., Zhou, Y., Pei, Q.: Convolutional neural networks for forecasting flood process in internet-of-things enabled smart city. Comput. Netw. 186, 107744 (2021)
2. Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23(3), 375–396 (2019)
3. Cho, M., Kim, D., Jung, H.: Implementation of cnn-based classification model for flood risk determination. J. Korea Inst. Inf. Commun. Eng. 26(3), 341–346 (2022)
4. CONAGUA: Análisis de las temporadas de huracanes de los años 2009, 2010 y 2011 en méxico. http://www.conagua.gob.mx/conagua07/publicaciones/publicaciones/cgsmn-2-12.pdf. Accessed June 2022
5. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)