Unboundedness Problems for Machines with Reversal-Bounded Counters

Author:

Baumann PascalORCID,D’Alessandro Flavio,Ganardi MosesORCID,Ibarra Oscar,McQuillan Ian,Schütze LiaORCID,Zetzsche GeorgORCID

Abstract

AbstractWe consider a general class of decision problems concerning formal languages, called “(one-dimensional) unboundedness predicates”, for automata that feature reversal-bounded counters (RBCA). We show that each problem in this class reduces—non-deterministically in polynomial time—to the same problem for just finite automata. We also show an analogous reduction for automata that have access to both a pushdown stack and reversal-bounded counters (PRBCA).This allows us to answer several open questions: For example, we show that it is $$\textsf{coNP}$$ coNP -complete to decide whether a given (P)RBCA language L is bounded, meaning whether there exist words $$w_1,\ldots ,w_n$$ w 1 , , w n with $$L\subseteq w_1^*\cdots w_n^*$$ L w 1 w n . For PRBCA, even decidability was open. Our methods also show that there is no language of a (P)RBCA of intermediate growth. This means, the number of words of each length grows either polynomially or exponentially. Part of our proof is likely of independent interest: We show that one can translate an RBCA into a machine with $$\mathbb {Z}$$ Z -counters in logarithmic space, while preserving the accepted language.

Publisher

Springer Nature Switzerland

Reference58 articles.

1. Alfred V. Aho and Jeffrey D. Ullman. The theory of parsing, translation, and compiling. 1: Parsing. Prentice-Hall, 1972. isbn: 0139145567. url: https://www.worldcat.org/oclc/310805937.

2. Brenda S Baker and Ronald V Book. “Reversal-bounded multipushdown machines”. In: Journal of Computer and System Sciences 8.3 (1974), pp. 315–332. doi: https://doi.org/10.1016/S0022-0000(74)80027-9.

3. David Barozzini, Lorenzo Clemente, Thomas Colcombet, and Pawel Parys. “Cost Automata, Safe Schemes, and Downward Closures”. In: 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference). Ed. by Artur Czumaj, Anuj Dawar, and Emanuela Merelli. Vol. 168. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 109:1–109:18. doi: https://doi.org/10.4230/LIPIcs.ICALP.2020.109.

4. David Barozzini, Pawel Parys, and Jan Wroblewski. “Unboundedness for Recursion Schemes: A Simpler Type System”. In: 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France. Ed. by Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff. Vol. 229. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 112:1–112:19. doi: https://doi.org/10.4230/LIPIcs.ICALP.2022.112.

5. Pascal Baumann, Flavio D’Alessandro, Moses Ganardi, Oscar Ibarra, Ian McQuillan, Lia Schütze, and Georg Zetzsche. Unboundedness problems for machines with reversal-bounded counters. 2023. doi: https://doi.org/10.48550/ARXIV.2301.10198. url: https://arxiv.org/abs/2301.10198.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Verifying Unboundedness via Amalgamation;Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science;2024-07-08

2. Techniques for Showing the Decidability of the Boundedness Problem of Language Acceptors;Lecture Notes in Computer Science;2024

3. On the Containment Problem for Deterministic Multicounter Machine Models;Automated Technology for Verification and Analysis;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3