Author:
Bernardo Marco,Rossi Sabina
Abstract
AbstractReversibility is the capability of a system of undoing its own actions starting from the last performed one, in such a way that a past consistent state is reached. This is not trivial for concurrent systems, as the last performed action may not be uniquely identifiable. There are several approaches to address causality-consistent reversibility, some including a notion of forward-reverse bisimilarity. We introduce a minimal process calculus for reversible systems to investigate compositionality properties and equational characterizations of forward-reverse bisimilarity as well as of its two components, i.e., forward bisimilarity and reverse bisimilarity, so as to highlight their differences. The study is conducted not only in a nondeterministic setting, but also in a stochastic one where time reversibility and lumpability for Markov chains are exploited.
Publisher
Springer Nature Switzerland
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献