Compositional Learning for Interleaving Parallel Automata

Author:

Labbaf FaezehORCID,Groote Jan FrisoORCID,Hojjat HosseinORCID,Mousavi Mohammad RezaORCID

Abstract

AbstractActive automata learning has been a successful technique to learn the behaviour of state-based systems by interacting with them through queries. In this paper, we develop a compositional algorithm for active automata learning in which systems comprising interleaving parallel components are learned compositionally. Our algorithm automatically learns the structure of systems while learning the behaviour of the components. We prove that our approach is sound and that it learns a maximal set of interleaving parallel components. We empirically evaluate the effectiveness of our approach and show that our approach requires significantly fewer numbers of input symbols and resets while learning systems. Our empirical evaluation is based on a large number of subject systems obtained from a case study in the automotive domain.

Publisher

Springer Nature Switzerland

Reference38 articles.

1. Aarts, F., de Ruiter, J., Poll, E.: Formal models of bank cards for free. In: Sixth IEEE International Conference on Software Testing, Verification and Validation, ICST 2013 Workshops Proceedings, Luxembourg, Luxembourg, March 18-22, 2013. pp. 461–468. IEEE Computer Society (2013). https://doi.org/10.1109/ICSTW.2013.60

2. Aarts, F., Schmaltz, J., Vaandrager, F.W.: Inference and abstraction of the biometric passport. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification, and Validation - 4th International Symposium on Leveraging Applications, ISoLA 2010, Heraklion, Crete, Greece, October 18-21, 2010, Proceedings, Part I. Lecture Notes in Computer Science, vol. 6415, pp. 673–686. Springer (2010). https://doi.org/10.1007/978-3-642-16558-0_54

3. Aichernig, B.K., Tappler, M.: Efficient active automata learning via mutation testing. Journal of Automated Reasoning 63(4), 1103–1134 (2019). https://doi.org/10.1007/s10817-018-9486-0

4. Aichernig, B.K., Tappler, M., Wallner, F.: Benchmarking combinations of learning and testing algorithms for active automata learning. In: Ahrendt, W., Wehrheim, H. (eds.) Tests and Proofs - 14th International Conference, TAP@STAF 2020, Bergen, Norway, June 22-23, 2020, Proceedings [postponed]. Lecture Notes in Computer Science, vol. 12165, pp. 3–22. Springer (2020). https://doi.org/10.1007/978-3-030-50995-8_1

5. An, J., Chen, M., Zhan, B., Zhan, N., Zhang, M.: Learning one-clock timed automata. In: Biere, A., Parker, D. (eds.) Tools and Algorithms for the Construction and Analysis of Systems. pp. 444–462. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-45190-5_25

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Small Test Suites for Active Automata Learning;Lecture Notes in Computer Science;2024

2. Compositional Automata Learning of Synchronous Systems;Fundamental Approaches to Software Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3